
DAFoam Documentation
Release v1.0

Ping He

Jul 25, 2020

Contents

1 DAFoam: Discrete Adjoint with OpenFOAM 1
1.1 Download . 2
1.2 Installation . 3
1.3 Tutorials . 8

1.3.1 Aerodynamics . 8
1.3.2 HeatTransfer . 25
1.3.3 Structure . 27
1.3.4 Hydrodynamics . 27
1.3.5 Aerothermal . 29
1.3.6 Aerostructural . 30

1.4 Development . 34
1.5 Publications . 34
1.6 Contact . 35

i

ii

CHAPTER 1

DAFoam: Discrete Adjoint with OpenFOAM

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

DAFoam contains a suite of discrete adjoint solvers for OpenFOAM. These adjoint solvers run as standalone executives
to compute derivatives. DAFoam also has a Python interface that allows the adjoint solvers to interact with external
modules for high-fidelity design optimization using the MACH framework. DAFoam has the following features:

• It implements an efficient discrete adjoint approach with competitive speed, scalability, accuracy, and compati-
bility.

• It allows rapid discrete adjoint development for any steady-state OpenFOAM solvers with modifying only a few
hundred lines of source codes.

• It supports design optimizations for a wide range of disciplines such as aerodynamics, heat transfer, structures,
hydrodynamics, and radiation.

The DAFoam repository comprises of five main directories, and the source code is available on GitHub.

• applications: adjoint solvers and utilities

1

https://dafoam.github.io
http://mdolab.engin.umich.edu/docs/machFramework/MACH-Aero.html
https://github.com/mdolab/dafoam

DAFoam Documentation, Release v1.0

• doc: documentation

• python: python interface to other optimization packages

• src: the core DAFoam libraries

• tutorials: sample optimization setup for each adjoint solver

Contents:

1.1 Download

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

The current stable version of DAFoam is v1.1. See the changes log from here.

There are two options to run DAFoam: pre-compiled package and source code. If you are running DAFoam for
the first time, we recommend using the pre-compiled version, which supports Linux (Ubuntu, Fedora, CentOS, etc),
MacOS, and Windows systems. For production runs on an HPC system, you need to compile DAFoam from the
source.

• Pre-compiled package

The pre-compiled package is available on Docker Hub. Before downloading the pre-compiled package,
you need to install Docker. Follow the installation instructions for Ubuntu, Fedora, CentOS, MacOS, and
Windows.

For example, on Ubuntu, you can install the latest Docker by running this command in the terminal:

sudo apt-get remove docker docker-engine docker.io containerd runc && sudo
→˓apt-get update && sudo apt-get install apt-transport-https ca-certificates
→˓curl gnupg-agent software-properties-common -y && curl -fsSL https://
→˓download.docker.com/linux/ubuntu/gpg | sudo apt-key add - && sudo add-apt-
→˓repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable" && sudo apt-get update && sudo apt-get install
→˓docker-ce -y

Then you need to add your user name to the docker group by:

sudo usermod -aG docker $USER

After this, you need to logout and re-login your account to make the usermod command effective. Once
done, verify the docker installation by:

docker --version

You should be able to see your installed Docker version. Note that different operating systems have very
different Docker installation process, refer to the above links for more details.

Once the Docker is installed and verified, run this command from the terminal:

docker run -it --rm -u dafoamuser -v $HOME:/home/dafoamuser/mount -w /home/
→˓dafoamuser/mount dafoam/opt-packages:v1.1 bash

It will first download the pre-compiled package (v1.1) from the Docker Hub if it has not been downloaded.
Then it will start a Docker container (a light-weight virtual machine), mount your local computer’s home

2 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://dafoam.github.io
https://github.com/mdolab/dafoam/releases/tag/v1.1.1
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/

DAFoam Documentation, Release v1.0

directory to the container’s mount directory, login to mount as dafoamuser, and set the relevant DAFoam
environmental variables. Now you are ready to run DAFoam tutorials. Refer to Tutorials for more details.

• Source code

The DAFoam source code is available at https://github.com/mdolab/dafoam. DAFoam depends on multi-
ple prerequisites and packages. Refer to Installation for installation instructions.

1.2 Installation

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

This section assumes you want to compile the DAFoam optimization package (v1.1) from the source on a Linux
system. If you use the pre-compiled version, skip this section.

The DAFoam package can be compiled with various dependency versions. Here we elaborate on how to compile it on
Ubuntu 18.04 using the dependencies shown in the following table.

Ubuntu Com-
piler

Open-
MPI

mpi4py PETSc petsc4py CGNS python numpy scipy Cython

18.04 gcc/7.5 1.10.7 3.0.2 3.11.0 3.11.0 3.3.0 3.6.5 1.14.3 1.1.0 0.28.2

To compile, you can just copy the code blocks in the following steps and run them on the terminal. NOTE: if
a code block contains multiple lines, copy all the lines and run them on the terminal. Make sure each step run
successfully before going to the next one. The entire compilation may take a few hours, the most time-consuming part
is OpenFOAM.

1. Prerequisites. Run this on terminal:

sudo apt-get update && \
sudo apt-get install -y build-essential flex bison cmake zlib1g-dev libboost-
→˓system-dev libboost-thread-dev libreadline-dev libncurses-dev libxt-dev qt5-
→˓default libqt5x11extras5-dev libqt5help5 qtdeclarative5-dev qttools5-dev
→˓libqtwebkit-dev freeglut3-dev libqt5opengl5-dev texinfo libscotch-dev libcgal-
→˓dev gfortran swig wget git vim cmake-curses-gui libfl-dev apt-utils --no-
→˓install-recommends

2. Python. Install Anaconda3-5.2.0:

mkdir -p $HOME/packages && \
cd $HOME/packages && \
wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh --no-check-
→˓certificate && \
chmod 755 Anaconda3-5.2.0-Linux-x86_64.sh && \
./Anaconda3-5.2.0-Linux-x86_64.sh -b -p $HOME/packages/anaconda3 && \
echo '# Anaconda3' >> $HOME/.bashrc && \
echo 'export PATH=$HOME/packages/anaconda3/bin:$PATH' >> $HOME/.bashrc && \
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/packages/anaconda3/lib' >>
→˓$HOME/.bashrc && \
. $HOME/.bashrc

3. OpenMPI. Append relevant environmental variables by running:

1.2. Installation 3

https://github.com/mdolab/dafoam
https://dafoam.github.io

DAFoam Documentation, Release v1.0

echo '# OpenMPI-1.10.7' >> $HOME/.bashrc && \
echo 'export MPI_INSTALL_DIR=$HOME/packages/openmpi-1.10.7/opt-gfortran' >> $HOME/
→˓.bashrc && \
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_INSTALL_DIR/lib' >> $HOME/.
→˓bashrc && \
echo 'export PATH=$MPI_INSTALL_DIR/bin:$PATH' >> $HOME/.bashrc && \
. $HOME/.bashrc

Then, configure and build OpenMPI:

cd $HOME/packages && \
wget https://download.open-mpi.org/release/open-mpi/v1.10/openmpi-1.10.7.tar.gz --
→˓no-check-certificate && \
tar -xvf openmpi-1.10.7.tar.gz && \
cd openmpi-1.10.7 && \
./configure --prefix=$MPI_INSTALL_DIR && \
make all install

Append one more relevant environmental variable by running:

echo 'export LD_PRELOAD=$MPI_INSTALL_DIR/lib/libmpi.so' >> $HOME/.bashrc && \
. $HOME/.bashrc

To verify the installation, run:

mpicc -v

You should see the version of the compiled OpenMPI.

Finally, install mpi4py-3.0.2:

cd $HOME/packages && \
wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-3.0.2.tar.gz --no-check-
→˓certificate && \
tar -xvf mpi4py-3.0.2.tar.gz && \
cd mpi4py-3.0.2 && \
rm -rf build && \
python setup.py install --user

4. Petsc. Append relevant environmental variables by running:

echo '# Petsc-3.11.0' >> $HOME/.bashrc && \
echo 'export PETSC_DIR=$HOME/packages/petsc-3.11.0' >> $HOME/.bashrc && \
echo 'export PETSC_ARCH=real-opt' >> $HOME/.bashrc && \
echo 'export PATH=$PETSC_DIR/$PETSC_ARCH/bin:$PATH' >> $HOME/.bashrc && \
echo 'export PATH=$PETSC_DIR/$PETSC_ARCH/include:$PATH' >> $HOME/.bashrc && \
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PETSC_DIR/$PETSC_ARCH/lib' >>
→˓$HOME/.bashrc && \
echo 'export PETSC_LIB=$PETSC_DIR/$PETSC_ARCH/lib' >> $HOME/.bashrc
. $HOME/.bashrc

Then, configure and compile:

cd $HOME/packages && \
wget http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-3.11.0.tar.gz --no-
→˓check-certificate && \
tar -xvf petsc-3.11.0.tar.gz && \

(continues on next page)

4 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

(continued from previous page)

cd petsc-3.11.0 && \
sed -i 's/ierr = MPI_Finalize();CHKERRQ(ierr);/\/\/ierr = MPI_Finalize();
→˓CHKERRQ(ierr);/g' src/sys/objects/pinit.c && \
./configure --PETSC_ARCH=real-opt --with-scalar-type=real --with-debugging=0 --
→˓with-mpi-dir=$MPI_INSTALL_DIR --download-metis=yes --download-parmetis=yes --
→˓download-superlu_dist=yes --download-fblaslapack=yes --with-shared-
→˓libraries=yes --with-fortran-bindings=1 --with-cxx-dialect=C++11 && \
make PETSC_DIR=$HOME/packages/petsc-3.11.0 PETSC_ARCH=real-opt all

NOTE: The above sed command comments out line 1367 in src/sys/objects/pinit.c to prevent Petsc from con-
flicting with OpenFOAM MPI_Finalize.

Finally, install petsc4py-3.11.0:

cd $HOME/packages && \
wget https://bitbucket.org/petsc/petsc4py/downloads/petsc4py-3.11.0.tar.gz --no-
→˓check-certificate && \
tar -xvf petsc4py-3.11.0.tar.gz && \
cd petsc4py-3.11.0 && \
rm -rf build && \
python setup.py install --user

5. CGNS. Append relevant environmental variables by running:

echo '# CGNS-3.3.0' >> $HOME/.bashrc && \
echo 'export CGNS_HOME=$HOME/packages/CGNS-3.3.0/opt-gfortran' >> $HOME/.bashrc &&
→˓ \
echo 'export PATH=$PATH:$CGNS_HOME/bin' >> $HOME/.bashrc && \
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CGNS_HOME/lib' >> $HOME/.bashrc &&
→˓\
. $HOME/.bashrc

Then, configure and compile:

cd $HOME/packages && \
wget https://github.com/CGNS/CGNS/archive/v3.3.0.tar.gz --no-check-certificate &&
→˓\
tar -xvaf v3.3.0.tar.gz && \
cd CGNS-3.3.0 && \
mkdir -p build && \
cd build && \
cmake .. -DCGNS_ENABLE_FORTRAN=1 -DCMAKE_INSTALL_PREFIX=$CGNS_HOME -DCGNS_BUILD_
→˓CGNSTOOLS=0 && \
make all install

6. MACH framework. First create a repos folder and setup relevant environmental variables:

echo '# Python Path' >> $HOME/.bashrc && \
echo 'export PYTHONPATH=$PYTHONPATH:$HOME/repos' >> $HOME/.bashrc
. $HOME/.bashrc && \
mkdir -p $HOME/repos

Then run:

cd $HOME/repos && \
git clone https://github.com/mdolab/baseclasses -b v1.1.0 && \
cd $HOME/repos && \

(continues on next page)

1.2. Installation 5

DAFoam Documentation, Release v1.0

(continued from previous page)

git clone https://github.com/mdolab/pygeo -b v1.1.0 && \
cd $HOME/repos && \
git clone https://github.com/mdolab/multipoint -b v1.1.0 && \
cd $HOME/repos && \
git clone https://github.com/mdolab/pyspline -b v1.1.0 && \
cd pyspline && \
cp config/defaults/config.LINUX_GFORTRAN.mk config/config.mk && \
make && \
cd $HOME/repos && \
git clone https://github.com/mdolab/pyhyp -b v2.1.0 && \
cd pyhyp && \
cp -r config/defaults/config.LINUX_GFORTRAN_OPENMPI.mk config/config.mk && \
make && \
cd $HOME/repos && \
git clone https://github.com/mdolab/cgnsutilities -b v2.1.0 && \
cd cgnsutilities && \
cp config.mk.info config.mk && \
make && \
echo '# cgnsUtilities' >> $HOME/.bashrc && \
echo 'export PATH=$PATH:$HOME/repos/cgnsutilities/bin' >> $HOME/.bashrc && \
cd $HOME/repos && \
git clone https://github.com/mdolab/idwarp && \
cd idwarp && \
git checkout f854b65 && \
cp -r config/defaults/config.LINUX_GFORTRAN_OPENMPI.mk config/config.mk && \
make && \
cd $HOME/repos && \
git clone https://github.com/mdolab/pyoptsparse -b v2.1.0 && \
cd pyoptsparse && \
pip install -r requirements.txt && \
rm -rf build && \
python setup.py install --user

7. OpenFOAM. Compile OpenFOAM-v1812 by running:

mkdir -p $HOME/OpenFOAM && \
cd $HOME/OpenFOAM && \
wget https://sourceforge.net/projects/openfoamplus/files/v1812/OpenFOAM-v1812.tgz/
→˓download --no-check-certificate -O OpenFOAM-v1812.tgz && \
wget https://sourceforge.net/projects/openfoamplus/files/v1812/ThirdParty-v1812.
→˓tgz/download --no-check-certificate -O ThirdParty-v1812.tgz && \
tar -xvf OpenFOAM-v1812.tgz && \
tar -xvf ThirdParty-v1812.tgz && \
cd $HOME/OpenFOAM/OpenFOAM-v1812 && \
wget https://github.com/mdolab/dafoam/releases/download/v1.1.0/UPstream.C --no-
→˓check-certificate && \
mv UPstream.C src/Pstream/mpi/UPstream.C && \
. etc/bashrc && \
export WM_NCOMPPROCS=4 && \
./Allwmake

NOTE: In the above command, we replaced the OpenFOAM-v1812’s built-in UPstream.C file with a customized
one because we need to prevent OpenFOAM from calling the MPI_Finialize function when wrapping Open-
FOAM functions using Cython.

NOTE: The above command will compile OpenFOAM using 4 CPU cores. If you want to compile OpenFOAM
using more cores, change the WM_NCOMPPROCS parameter before running ./Allwmake

6 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

Finally, verify the installation by running:

simpleFoam -help

It should see some basic information of OpenFOAM

8. DAFoam and pyOFM. First compile pyOFM:

cd $HOME/repos && \
git clone https://github.com/mdolab/pyofm -b v1.1.2 && \
cd pyofm && \
. $HOME/OpenFOAM/OpenFOAM-v1812/etc/bashrc && \
make

Then, compile DAFoam by running:

cd $HOME/repos && \
git clone https://github.com/mdolab/dafoam -b v1.1.2 && \
. $HOME/OpenFOAM/OpenFOAM-v1812/etc/bashrc && \
cd $HOME/repos/dafoam && \
make

Finally, run the regression test:

cd $HOME/repos/dafoam/python/reg_tests && \
rm -rf input.tar.gz && \
wget https://github.com/mdolab/dafoam/raw/master/python/reg_tests/input.tar.gz --
→˓no-check-certificate && \
tar -xvf input.tar.gz && \
python run_reg_tests.py

The regression tests should take less than 30 minutes. You should see something like:

dafoam buoyantBoussinesqSimpleDAFoam: Success!
dafoam buoyantSimpleDAFoam: Success!
dafoam calcDeltaVolPointMat: Success!
dafoam calcSensMap: Success!
dafoam rhoSimpleCDAFoam: Success!
dafoam rhoSimpleDAFoam: Success!
dafoam simpleDAFoam: Success!
dafoam simpleTDAFoam: Success!
dafoam solidDisplacementDAFoam: Success!
dafoam turboDAFoam: Success!

You should see the first “Success” in less than 5 minute. If any of these tests fails or they take more than
30 minutes, check the error in the generated dafoam_reg_* files. Make sure all the tests pass before running
DAFoam.

In summary, here is the folder structures for all the installed packages:

$HOME
- OpenFOAM
- OpenFOAM-v1812

(continues on next page)

1.2. Installation 7

DAFoam Documentation, Release v1.0

(continued from previous page)

- ThirdParty-v1812
- packages
- anaconda3
- CGNS-3.3.0
- mpi4py-3.0.2
- petsc-3.11.0
- petsc4py-3.11.0

- repos
- baseclasses
- cgnsutilities
- dafoam
- idwarp
- multipoint
- pygeo
- pyhyp
- pyofm
- pyoptsparse
- pyspline

Here is the DAFoam related environmental variable setup that should appear in your bashrc file:

OpenMPI-1.10.7
export MPI_INSTALL_DIR=$HOME/packages/openmpi-1.10.7/opt-gfortran
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_INSTALL_DIR/lib
export PATH=$MPI_INSTALL_DIR/bin:$PATH
export LD_PRELOAD=$MPI_INSTALL_DIR/lib/libmpi.so
PETSC
export PETSC_DIR=$HOME/packages/petsc-3.11.0
export PETSC_ARCH=real-opt
export PATH=$PETSC_DIR/$PETSC_ARCH/bin:$PATH
export PATH=$PETSC_DIR/$PETSC_ARCH/include:$PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PETSC_DIR/$PETSC_ARCH/lib
export PETSC_LIB=$PETSC_DIR/$PETSC_ARCH/lib
CGNS-3.3.0
export CGNS_HOME=$HOME/packages/CGNS-3.3.0/opt-gfortran
export PATH=$PATH:$CGNS_HOME/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CGNS_HOME/lib
Python Path
export PYTHONPATH=$PYTHONPATH:$HOME/repos
cgnsUtilities
export PATH=$PATH:$HOME/repos/cgnsutilities/bin

1.3 Tutorials

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

There are multiple optimization cases in the tutorials folder.

1.3.1 Aerodynamics

List of cases:

8 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://dafoam.github.io

DAFoam Documentation, Release v1.0

NACA0012 airfoil incompressible

This is an aerodynamic shape optimization case for an airfoil at low speed. The summary of the case is as follows:

Case: Airfoil aerodynamic optimization
Geometry: NACA 0012
Objective function: Drag coefficient
Design variables: 40 FFD points moving in the y direction, one angle of attack
Constraints: Symmetry, volume, thickness, and lift constraints (total number: 123)
Mach number: 0.1
Reynolds number: 2.3 million
Mesh cells: 8.6K
Adjoint solver: simpleDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 1

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 6 steps, see the following figure. The baseline design has C_D=0.01316,
C_L=0.3750, and the optimized design has C_D=0.01273, C_L=0.3750.

Now we elaborate on the details of optimization configurations. The Allrun.sh script has three sections. In the first
section, we check if the OpenFOAM environments are loaded:

if [-z "$WM_PROJECT"]; then
echo "OpenFOAM environment not found, forgot to source the OpenFOAM bashrc?"
exit

fi

if [-z "$1"]; then
echo "No argument supplied!"
echo "Example: ./Allrun.sh 1"
echo "This will run the case using 1 CPU core."
exit

fi

In the second section, we generate a structured mesh using the pyHyp package:

generate mesh
echo "Generating mesh.."
python genAirFoilMesh.py > log.meshGeneration
plot3dToFoam -noBlank volumeMesh.xyz >> log.meshGeneration
autoPatch 30 -overwrite >> log.meshGeneration
createPatch -overwrite >> log.meshGeneration
renumberMesh -overwrite >> log.meshGeneration
echo "Generating mesh.. Done!"

1.3. Tutorials 9

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/NACA0012_Airfoil_Incompressible
https://github.com/mdolab/pyhyp

DAFoam Documentation, Release v1.0

Here the genAirFoilMesh.py script reads the NACA 0012 profile, generates a surface mesh, and calls pyHyp to gen-
erate a volume mesh. DAFoam does not support pure 2D cases, so we use one cell in the spanwise (z) direction and
impose the symmetry boundary condition. The pyHyp will output the volume mesh in plot3D format (.xyz). We
convert it to OpenFOAM meshes using the plot3dToFoam, autoPatch, createPatch, and renumberMesh utilities in
OpenFOAM. Refer to Mesh Generation in OpenFOAM for detailed instructions. The mesh is as follows:

Here the red squares are the FFD control points to morph the airfoil shape. NOTE: make sure the design surfaces are
completely within the FFD volume, otherwise, you will see errors. The FFD file is in plot3D format and is located in
FFD/wingFFD.xyz. You can use the genFFD.py script to generate this FFD file by running python genFFD.py.
Alternatively, you can use advance software such as ICEM for more complex FFD point generation. You can use
Paraview to view the plot3D files (remember to uncheck Binary File and check Multi Grid), or you can convert the
plot3D mesh to OpenFOAM format by using the plot3dToFoam utility (see the example above).

In the third section, we run these commands to start the optimization:

these are the actually commands to run the case
./foamRun.sh $1 &
sleep 1
echo "Running the optimization. Check the log.opt file for the progress."
mpirun -np $1 python runScript.py &> log.opt

DAFoam has two major layers: OpenFOAM and Python, and they interact through file IO. The first command ./
foamRun.sh $1 & runs a bash script for the OpenFOAM layer and put it to background. This bash script will
detect file output from the Python layer and run the corresponding executives, i.e., run the coloring, check the mesh
quality, simulate the flow, and compute the adjoint derivatives. You need to change the names of the executives in
foamRun.sh if you want to use different primal and adjoint solvers.

The second command mpirun -np $1 python runScript.py &> log.opt runs the Python layer and
outputs the optimization log to log.opt. All the optimization configurations are defined in runScript.py.
As mentioned in Tutorials, the runScript.py has seven sections. We need to modify the Input Param-
eters, DVGeo, and DVCon sections for different optimization cases. Taking the runScript.py in tutori-
als/Aerodynamics/NACA0012_Airfoil_Incompressible as an example, we first define the input argument as follow:

parser.add_argument("--output", help='Output directory', type=str,default='../
→˓optOutput/')
parser.add_argument("--opt", help="optimizer to use", type=str, default='slsqp')
parser.add_argument("--task", help="type of run to do", type=str, default='opt')
parser.add_argument('--optVars',type=str,help='Vars for the optimizer',default="[
→˓'shape']")

Here the –output argument defines where the intermediate results are stored, the default is ../optOutput. The inter-
mediate results contain the OpenFOAM 3D flow fields, design variables, objective and derivatives values, flow and
adjoint solution log files, check mesh quality logs for each optimization iteration. We do not store the adjoint vec-

10 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://www.openfoam.com/documentation/user-guide/mesh.php

DAFoam Documentation, Release v1.0

tors but they are available in the run folder with names psi_*. The adjoint vectors are stored in the same order as
the state variables, either in state-by-state or cell-by-cell order. Refer to this paper for details. Note that the adjoint
vectors are scaled based on the values defined by stateScaling in adjointDict. The –opt argument defines
which optimizer to use. pyOptsparse supports multiple optimizers, here we pre-define some parameters for SNOPT,
SLSQP, IPOPT, and PSQP. SLSQP (default), IPOPT, and PSQP are open souce while SNOPT is not. The –task ar-
gument defines what task to perform, the options are: run (just run the flow and adjoint once), opt (optimization),
testsensshape (test the accuracy of sensitivity wrt to shape variables), testsensuin (test the accuracy of sen-
sitivity wrt to the inlet boundary conditions), solvecl (solve for CL; this is for wing cases only), plotsensmap
(plot the sensitivity map).

After this, we define the boundary conditions and reference values:

pRef = 0.0 # reference pressure, set it to 0 for incompressible
→˓cases
rhoRef = 1.0 # reference density, set it to 1 for incompressible
→˓cases
UmagIn = 35.0 # magnitude of far field velocity
LRef = 1.0 # reference length used in momentum coefficient (CM)
→˓calculation
ARef = 1.0*0.1 # reference area used in drag or lift coefficients (CD,
→˓CL) calculations
CofR = [0.25,0,0] # center of rotation used in momentum coefficient (CM)
→˓calculation
CL_star = 0.375 # the target lift coefficient (lift constraint)
alpha0 = 3.579107 # initial angle of attack

Then we define a function to compute far field velocity components and drag and lift directions, given the value of
angle of attack and far field velocity magnitude:

def calcUAndDir(UIn,alpha1):
dragDir = [np.cos(alpha1*np.pi/180),np.sin(alpha1*np.pi/180),0]
liftDir = [-np.sin(alpha1*np.pi/180),np.cos(alpha1*np.pi/180),0]
inletU = [float(UIn*np.cos(alpha1*np.pi/180)),float(UIn*np.sin(alpha1*np.pi/180)),

→˓0]
return inletU, dragDir, liftDir

inletu0, dragdir0, liftdir0 = calcUAndDir(UmagIn,alpha0)

Next, we define the input parameters for optimization in the aeroOptions dictionary. The explanation of these input
parameters is in Python layer. Refer to classes-python-pyDAFoam-PYDAFOAM-aCompleteInputParameterSet(). For
this specific case, we have:

output options
'casename': 'NACA0012_'+task+'_'+optVars[0], # name of the case
'outputdirectory': outputDirectory, # path to store the
→˓intermediate shapes and flow fields
'writesolution': True, # write intermediate
→˓shapes and flow fields to outputdirectory
design surfaces and cost functions
'designsurfacefamily': 'designSurfaces', # group name of design
→˓surface, no need to change
'designsurfaces': ['wing','wingte'], # names of design
→˓surface to morph, these patch names should be in constant/polyMesh/boundary
'objfuncs': ['CD','CL'], # names of the
→˓objective functions
'objfuncgeoinfo': [['wing','wingte'], # for each object
→˓function, what are their patch names to integrate over

(continues on next page)

1.3. Tutorials 11

https://doi.org/10.1016/j.paerosci.2019.05.002
_static/Python/index.html

DAFoam Documentation, Release v1.0

(continued from previous page)

['wing','wingte']],
'referencevalues': {'magURef':UmagIn, # these are reference
→˓values for computing CD, CL, etc.

'ARef':ARef,
'LRef':LRef,
'pRef':pRef,
'rhoRef':rhoRef},

'liftdir': liftdir0, # drag, lift
→˓directions and center of rotation
'dragdir': dragdir0,
'cofr': CofR,
flow setup
'adjointsolver': 'simpleDAFoam', # which flow/adjoint
→˓solver to use, for incompressible we use simpleDAFoam
'rasmodel': 'SpalartAllmarasFv3', # which turbulence
→˓model to use
'flowcondition': 'Incompressible', # flow condition,
→˓either Incompressible or Compressible
'maxflowiters': 800, # how many steps to
→˓run the flow
'writeinterval': 800, # how many steps to
→˓write the flow fields to disks
'setflowbcs': True, # whether to set/
→˓update boundary conditions
'inletpatches': ['inout'], # names of the
→˓farfield or inlet/outlet patches
'outletpatches': ['inout'],
'flowbcs': {'bc0':{'patch':'inout', # we can set boundary
→˓condition in the python layer, this will overwrite

'variable':'U', # the boundary
→˓conditions in the '0' folder in the OpenFOAM cases.

'value':inletu0},
'useWallFunction':'true'}, # we use wall function

adjoint setup
'adjgmresmaxiters': 1000, # how many steps to
→˓solve the adjoint equations
'adjgmresrestart': 1000, # how many Krylov
→˓subspace to keep, always set it to adjgmresmaxiters
'adjgmresreltol': 1e-6, # adjoint GMRE
→˓convergence tolerance
'adjdvtypes': ['FFD'], # types of derivatives,
→˓ can be FFD (shape variables), UIn (boundary condition)
'epsderiv': 1.0e-6, # the finite-
→˓difference step size for state variables in the partial derivative computation for
→˓the adjoint
'epsderivffd': 1.0e-3, # the finite-
→˓difference step size for shape variables (FFD displacement)
'adjpcfilllevel': 1, # number of incomplete-
→˓LU preconditioning fill-in, set it to higher if you have convergence problems
'adjjacmatordering': 'cell', # how to order the
→˓states can be either state or cell
'adjjacmatreordering': 'natural', # how to reorder the
→˓states, options are: natural, rcm, nd
'statescaling': {'UScaling':UmagIn, # give reference
→˓values to scale the states

'pScaling':UmagIn*UmagIn/2,
'nuTildaScaling':1e-4,

(continues on next page)

12 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

(continued from previous page)

'phiScaling':1},
########## misc setup ##########
'mpispawnrun': False, # if you want to run
→˓this script without the mpirun command (in serial), set it to False, otherwise, True
'restartopt': False, # whether to restart
→˓the optimization
'meshmaxnonortho': 70.0, # these are some
→˓thresholds for mesh quality check
'meshmaxskewness': 10.0,
'meshmaxaspectratio': 2000.0,

Next, we need to define the mesh warping parameters:

mesh warping parameters, users need to manually specify the symmetry plane
meshOptions = {'gridFile': os.getcwd(),

'fileType': 'openfoam',
point and normal for the symmetry plane
'symmetryPlanes': [[[0.,0., 0.],[0., 0., 1.]],[[0.,0., 0.1],

→˓[0., 0., 1.]]]}

Here we need to manually define the symmetry planes.

Next, we can define some parameters for optimizers, check pyOptSparse for a complete set of parameters for each
optimizer:

options for optimizers
outPrefix = outputDirectory+task+optVars[0]
if args.opt == 'snopt':

optOptions = {
'Major feasibility tolerance': 1.0e-6, # tolerance for constraint
'Major optimality tolerance': 1.0e-6, # tolerance for gradient
'Minor feasibility tolerance': 1.0e-6, # tolerance for constraint
'Verify level': -1, # do not verify derivatives
'Function precision': 1.0e-6,
'Major iterations limit': 20,
'Nonderivative linesearch': None,
'Major step limit': 2.0,
'Penalty parameter': 0.0, # initial penalty parameter
'Print file': os.path.join(outPrefix+'_SNOPT_print.out'),
'Summary file': os.path.join(outPrefix+'_SNOPT_summary.out')}

elif args.opt == 'psqp':
optOptions = {

'TOLG': 1.0e-6, # tolerance for gradient
'TOLC': 1.0e-6, # tolerance for constraint
'MIT': 20, # max optimization iterations
'IFILE': os.path.join(outPrefix+'_PSQP.out')}

elif args.opt == 'slsqp':
optOptions = {

'ACC': 1.0e-5, # convergence accuracy
'MAXIT': 20, # max optimization iterations
'IFILE': os.path.join(outPrefix+'_SLSQP.out')}

elif args.opt == 'ipopt':
optOptions = {

'tol': 1.0e-6, # convergence accuracy
'max_iter': 20, # max optimization iterations
'output_file': os.path.join(outPrefix+'_IPOPT.out')}

else:
(continues on next page)

1.3. Tutorials 13

https://github.com/mdolab/pyoptsparse

DAFoam Documentation, Release v1.0

(continued from previous page)

print("opt arg not valid!")
exit(0)

Now we can define the design variable in the DVGeo section:

FFDFile = './FFD/wingFFD.xyz'
DVGeo = DVGeometry(FFDFile)

ref axis
x = [0.25,0.25]
y = [0.00,0.00]
z = [0.00,0.10]
c1 = pySpline.Curve(x=x, y=y, z=z, k=2)
DVGeo.addRefAxis('bodyAxis', curve = c1,axis='z')

def alpha(val, geo=None):
inletu, dragdir, liftdir = calcUAndDir(UmagIn,np.real(val))

flowbcs=CFDSolver.getOption('flowbcs')
for key in flowbcs.keys():

if key == 'useWallFunction':
continue

if flowbcs[key]['variable'] == 'U':
flowbcs[key]['value'] = inletu

CFDSolver.setOption('setflowbcs',True)
CFDSolver.setOption('flowbcs',flowbcs)
CFDSolver.setOption('dragdir',dragdir)
CFDSolver.setOption('liftdir',liftdir)

select points
pts=DVGeo.getLocalIndex(0)
indexList=pts[:,:,:].flatten()
PS=geo_utils.PointSelect('list',indexList)
DVGeo.addGeoDVLocal('shapey',lower=-1.0, upper=1.0,axis='y',scale=1.0,pointSelect=PS)
DVGeo.addGeoDVGlobal('alpha', alpha0,alpha,lower=0, upper=10., scale=1.0)

Here we first load the wingFFD.xyz file and create a DVGeo object. Then we add a reference axis defined by the x, y,
and z lists. The reference axis can be used to define twist design variables. The wing sections will then rotate wrt to
the reference axis (see the Aircraft wing-body-tail configuration and UAV wing multipoint cases for reference). Next,
we define a function def alpha and use it as the design variable (angle of attack). This function will basically
change the far field velocity components, drag and lift directions for a given angle of attack. Finally, we select the
design variable points. We first select the first block of the plot3D FFD file pts=DVGeo.getLocalIndex(0).
We then select all the points in this block indexList=pts[:,:,:]. Base on your case setup, you may want
to select only parts of the points. This can be done by giving a range of indices, e.g., pts[1:3,:,:] will select
points with i=1 to 3, and all j and k indices. NOTE: for this case, we have only one block for the plot3D file, but
you can create multiple blocks. For example, if your plot3D file has two blocks and you want to select the 2nd block,
do pts=DVGeo.getLocalIndex(1). We then call DVGeo.addGeoDVLocal to add these FFD points as the
shape variable, and allow them to move in the y direction with lower and upper bounds -1.0 m and +1.0 m. Similarly,
DVGeo.addGeoDVGlobal adds the angle of attack as the design variable. See the instructions in pyGeo for more
details.

After the design variables are set, we need to impose the relevant constraints:

no need to change this block
DVCon = DVConstraints()
DVCon.setDVGeo(DVGeo)

(continues on next page)

14 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/pygeo

DAFoam Documentation, Release v1.0

(continued from previous page)

[p0, v1, v2] = CFDSolver.getTriangulatedMeshSurface(groupName=CFDSolver.getOption(
→˓'designsurfacefamily'))
surf = [p0, v1, v2]
DVCon.setSurface(surf)

define a 2D plane for volume and thickness constraints
leList = [[1e-4,0.0,1e-4],[1e-4,0.0,0.1-1e-4]]
teList = [[0.998-1e-4,0.0,1e-4],[0.998-1e-4,0.0,0.1-1e-4]]
DVCon.addVolumeConstraint(leList, teList, nSpan=2, nChord=50,lower=1.0,upper=3,
→˓scaled=True)
DVCon.addThicknessConstraints2D(leList, teList,nSpan=2,nChord=50,lower=0.8, upper=3.0,
→˓scaled=True)

#Create a linear constraint so that the curvature at the symmetry plane is zero
pts1=DVGeo.getLocalIndex(0)
indSetA = []
indSetB = []
for i in range(10):

for j in [0,1]:
indSetA.append(pts1[i,j,1])
indSetB.append(pts1[i,j,0])

DVCon.addLinearConstraintsShape(indSetA,indSetB,factorA=1.0,factorB=-1.0,lower=0.0,
→˓upper=0.0)

#Create a linear constraint so that the leading and trailing edges do not change
pts1=DVGeo.getLocalIndex(0)
indSetA = []
indSetB = []
for i in [0,9]:

for k in [0]: # do not constrain k=1 because it is linked in the above symmetry
→˓constraint

indSetA.append(pts1[i,0,k])
indSetB.append(pts1[i,1,k])

DVCon.addLinearConstraintsShape(indSetA,indSetB,factorA=1.0,factorB=1.0,lower=0.0,
→˓upper=0.0)

Here we first define a 2D plane for volume and thickness constraints by giving leList and teList. The thickness
constraint function will project the points in the 2D plane to the upper and lower surfaces of the wing, the distance
will be the thickness. Similarly, the volume constraint function will project and form a 3D volume. Then, we define
linear constraints to link the displacements for the FFD points. Because we use a symmetry plane, we need to link all
the y displacement magnitudes between k=0 and k=1. In addition, we want to fix the leading and trailing edges. To
do this, we set the y displacements at j=0 and j=1 to have the same magnitudes but opposite signs. We do this for both
i=0 (leading) and i=9 (trailing). Note that for wing cases, the fixed leading and trailing edge constraints can be easily
done by calling:

Le/Te constraints
DVCon.addLeTeConstraints(0, 'iHigh')
DVCon.addLeTeConstraints(0, 'iLow')

See Aircraft wing-body-tail configuration and UAV wing multipoint cases for reference. Also refer to the instructions
in pyGeo for more details.

Next, we define a function to compute objective functions and constraints def aeroFuncs(xDV):. Simi-
larly, we define a function to compute derivatives def aeroFuncsSens(xDV,funcs):. These two func-
tions will be given to pyOptSparse for optimization, i.e., optProb = Optimization('opt', aeroFuncs,
comm=gcomm) and sol = opt(optProb, sens=aeroFuncsSens, storeHistory=histFile). For
optimization, we also need to define the objective function and add physical constraints:

1.3. Tutorials 15

https://github.com/mdolab/pygeo

DAFoam Documentation, Release v1.0

Add objective
optProb.addObj('CD', scale=1)
Add physical constraints
optProb.addCon('CL',lower=CL_star,upper=CL_star,scale=1)

We can add only one objective function, but multiple physical constraints (call optProb.addCon multiple times).
NOTE: the geometric constraints have been added in DVGeo.

The above are the basic configurations for DAFoam. Good luck!

NACA0012 airfoil compressible

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is an aerodynamic shape optimization case for an airfoil at transonic conditions. The summary of the case is as
follows:

Case: Airfoil aerodynamic optimization
Geometry: NACA0012
Objective function: Drag coefficient
Design variables: 40 FFD points moving in the y direction, one angle of attack
Constraints: Symmetry, volume, thickness, and lift constraints (total number: 81)
Mach number: 0.7
Reynolds number: 2.3 million
Mesh cells: 8.6K
Adjoint solver: rhoSimpleCDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 1

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 17 steps, see the following figure. The baseline design has C_D=0.01777,
C_L=0.5000, and the optimized design has C_D=0.01205, C_L=0.5000.

In this case, we need to use rhoSimpleCDAFoam, a compressible solver that uses the SIMPLEC algorithm. The
case setup is similar to NACA0012 airfoil incompressible. The major difference is in the aeroOptions dictionary
where we need to define different divschemes, fvrelaxfactors, and simplecontrol. These parameters
are critical to ensure robust flow simulations for transonic conditions.

Aircraft wing-body-tail configuration

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

16 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/NACA0012_Airfoil_Compressible

DAFoam Documentation, Release v1.0

This is a trimmed aerodynamic shape optimization case for an aircraft wing-body-tail configuration at transonic con-
ditions. The summary of the case is as follows:

Case: Aircraft aerodynamic optimization
Geometry: CRM wing, body, and tail
Objective function: Drag coefficient
Design variables: 216 FFD points moving in the z direction, 9 wing twists, one tail rotation, one angle of
attack
Constraints: Volume, thickness, LE/TE, and lift constraints (total number: 771)
Mach number: 0.85
Reynolds number: 5 million
Mesh cells: 100K
Adjoint solver: rhoSimpleCDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 4

The optimization progress will then be written in the log.opt file. NOTE, we recommend running this case on an HPC
system using at least 4 CPU cores.

For this case, the optimization converges in 20 steps, see the following figure. The baseline design has C_D=0.05242,
C_L=0.5000, C_M=-0.02611 and the optimized design has C_D=0.04997, C_L=0.4999, C_M=0.00015.

1.3. Tutorials 17

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/CRM_Wing_Body_Tail

DAFoam Documentation, Release v1.0

In this case, we need to use rhoSimpleCDAFoam, a compressible solver that uses the SIMPLEC algorithm. The case
setup is similar to the NACA0012 airfoil compressible except that we have more design variables and constraints. The
mesh and FFD points are as follows.

18 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

We use the OpenFOAM’s built-in mesh tool snappyHexMesh to generate the unstructured hexa mesh. We use
ICEM to generate the body-fitted FFD points. We define two more global design variables: twist and tailTwist:

def twist(val, geo):
Set all the twist values
for i in xrange(nTwist):

geo.rot_y['wing'].coef[i+1] = val[i]

Also set the twist of the root to the SOB twist
geo.rot_y['wing'].coef[0] = val[0]

def tailTwist(val, geo):
Set one twist angle for the tail
geo.rot_y['tail'].coef[:] = val[0]

We then add them into the DVGeo object:

DVGeo.addGeoDVGlobal('twist', 0*np.zeros(nTwist), twist,lower=lower, upper=upper,
→˓scale=0.1)
DVGeo.addGeoDVGlobal('tail', 0*np.zeros(1), tailTwist,lower=-10, upper=10, scale=0.1)

1.3. Tutorials 19

DAFoam Documentation, Release v1.0

UAV wing multipoint

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is a multipoint aerodynamic shape optimization case for a low-speed UAV wing. The summary of the case is as
follows:

Case: UAV wing multipoint aerodynamic optimization
Geometry: Rectangular wing with the Eppler214 profile
Objective function: Weighted drag coefficient at CL=0.6 and 0.75
Design variables: 120 FFD points moving in the y direction, 6 twists, two angle of attack
Constraints: Volume, thickness, LE/TE, and lift constraints (total number: 414)
Mach number: 0.07
Reynolds number: 0.9 million
Mesh cells: 25K
Adjoint solver: simpleDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the MultiPointMain folder and run:

./Allrun.sh 2

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 20 steps, see the following figure. The baseline design has C_D=0.04019,
C_L=0.7500 and the optimized design has C_D=0.03811, C_L=0.7446.

In this case, we use simpleDAFoam. The case setup is similar to NACA0012 airfoil incompressible except that we
have more design variables and constraints and use a multipoint setup 'multipointopt':True. The mesh and
FFD points are as follows. We use ICEM to generate the body-fitted FFD points.

20 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/Odyssey_Wing

DAFoam Documentation, Release v1.0

In the beginning of the runScript.py script, we define multipoint parameters:

nProcs = args.nProcs
nFlowCases = 2
CL_star = [0.6,0.75]
alphaMP = [1.768493,3.607844]
MPWeights = [0.3,0.7]
UmagIn = 24.8
ARef = 1.2193524

Here we need to prescribe the number of CPU cores and then provide it later to the multipoint module
multiPointSparse. We setup two flow conditions at C_L=0.6 and 0.75 and their weights are 0.3 and 0.7. We
need to create two folders FlowConfig0 and FlowConfig1 for multipoint runs. If you have more flow conditions, add
more accordingly.

For the multipoint runs, we no longer use a foamRun.sh script, instead, we use foamRunMultiPoint.sh, which has
more complex IO interaction calls. In addition, instead of using aeroFuncs(xDV): and aeroFuncsSens(xDV,
funcs):, we define aeroFuncsMP(xDV): and aeroFuncsSensMP(xDV,funcs):. We also define a func-
tion objCon(funcs, printOK): to combine the objective functions and derivatives of these flow conditions.

Wind turbine

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

1.3. Tutorials 21

DAFoam Documentation, Release v1.0

This is an aerodynamic shape optimization case for the NREL6 wind turbine. The summary of the case is as follows:

Case: Wind turbine aerodynamic optimization
Geometry: NREL6
Objective function: Torque
Design variables: 100 FFD points moving in the x and y directions
Constraints: None
Inlet velocity: 7 m/s
Rotation speed: 7.5 rad/s
Mesh cells: 60K
Adjoint solver: turboDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 8

The optimization progress will then be written in the log.opt file. NOTE, we recommend running this case on an HPC
system using at least 8 CPU cores.

For this case, the optimization was run for 5 steps, see the following figure. The baseline design has a torque of 631.1
N m, and the optimized design has a torque of 1352.9 N m.

The mesh and FFD points are as follows. We use snappyHexMesh to generate the meshes.

22 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/NREL6

DAFoam Documentation, Release v1.0

Axial compressor rotor

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is an aerodynamic shape optimization case for the Rotor67 axial compressor. The summary of the case is as
follows:

Case: Axial compressor aerodynamic optimization at transonic conditions
Geometry: Rotor67
Objective function: Torque
Design variables: 80 FFD points moving in the y and z directions
Constraints: Constant mass flow rate and total pressure ratio
Tip Mach number: 1.38
Rotation speed: -1680 rad/s
Mesh cells: 60K
Adjoint solver: turboDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 8

The optimization progress will then be written in the log.opt file. NOTE, we recommend running this case on an HPC
system using at least 8 CPU cores.

For this case, the optimization was run for 20 steps, see the following figure. The baseline design has C_M=0.08574,
m=1.733 m^3/s, p1/p0=1.463, and the optimized design has C_M=0.0782, m=1.625 m^3/s, p1/p0=1.460.

1.3. Tutorials 23

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerodynamics/Rotor67

DAFoam Documentation, Release v1.0

The mesh and FFD points are as follows. We use ICEM to generate the triangular meshes and FFD points.

24 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

1.3.2 HeatTransfer

List of cases:

U-bend internal cooling channel

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is a heat transfer optimization case for a U-bend internal cooling channel. The summary of the case is as follows:

Case: Heat transfer optimization for U bend cooling channels
Geometry: von Karman U bend duct
Objective function: Nusselt number
Design variables: 114 FFD points moving in the x, y, and z directions
Constraints: Symmetry constraint (total number: 38)
Mach number: 0.02
Reynolds number: 4.2e4
Mesh cells: 4.8K
Adjoint solver: simpleTDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 1

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 6 steps, see the following figure. The baseline design has Nu=25.14 and
the optimized design has Nu=26.89.

1.3. Tutorials 25

https://github.com/mdolab/dafoam/tree/master/tutorials/HeatTransfer/UBend

DAFoam Documentation, Release v1.0

We use ICEM to generate the FFD points.

We use simpleTDAFoam, which is based on simpleDAFoam with an extra scalar equation for temperature.

26 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

DAFoam Documentation, Release v1.0

1.3.3 Structure

List of cases:

Axial compressor rotor

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is a structural optimization case for a axial compressor rotor (Rotor 67). The summary of the case is as follows:

Case: Structural optimization for the engine fan
Geometry: Rotor 67
Objective function: Maximal von Mises stress
Design variables: 120 FFD points moving in the x, y, and z directions
Constraints: None
Mesh cells: 94K
Adjoint solver: solidDisplacementDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 1

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 4 steps, see the following figure. The baseline design has sigma=1.828e8
Pa and the optimized design has sigma=1.507e8 Pa.

We use solidDisplacementDAFoam. The mesh and FFD setup are same as Axial compressor rotor. The rotor runs at
1860 rad/s.

1.3.4 Hydrodynamics

List of cases:

1.3. Tutorials 27

https://github.com/mdolab/dafoam/tree/master/tutorials/Structure/Rotor67

DAFoam Documentation, Release v1.0

Bulk carrier hull

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is a hydrodynamic optimization case for a bulk carrier hull (JBC). The summary of the case is as follows:

Case: Ship hydrodynamic optimization with self-propulsion
Geometry: Japan Bulk Carrier (JBC) hull
Objective function: Weighted drag and wake distortion
Design variables: 32 FFD points moving in the y direction
Constraints: Volume, thickness, symmetry, and curvature constraints (total number: 83)
Mach number: <0.01
Reynolds number: 7.5 million
Mesh cells: 40K
Adjoint solver: simpleDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 4

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 20 steps, see the following figure. The baseline design has C_D=001773
and the optimized design has C_D=0.001692.

We use simpleDAFoam and ignore the free surface. We generate the unstructure mesh using snappyHexMesh. The
mesh and FFD setup is as follows.

28 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/dafoam/tree/master/tutorials/Hydrodynamics/JBC

DAFoam Documentation, Release v1.0

The runScript.py is written for multi objectives configurations where we can combine drag and wake distortion. In
this case, the weight for wake distortion is set to be 0. We need to use more refined mesh to obtain an accurate wake
distortion value. We also have a curvature constraint for this case.

1.3.5 Aerothermal

List of cases:

U-bend internal cooling channel

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is an aerothermal optimization case for a U-bend internal cooling channel. The summary of the case is as follows:

Case: Aerothermal optimization for U bend cooling channels with radiation and buoyancy
Geometry: von Karman U bend duct
Objective function: Weighted pressure loss and Nusselt number
Design variables: 114 FFD points moving in the x, y, and z directions
Constraints: Symmetry and curvature constraints (total number: 41)
Mach number: 0.02
Reynolds number: 4.2e4

1.3. Tutorials 29

DAFoam Documentation, Release v1.0

Mesh cells: 4.8K
Adjoint solver: buoyantBoussinesqSimpleDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the run folder and run:

./Allrun.sh 1

The optimization progress will then be written in the log.opt file.

For this case, the optimization converges in 8 steps, see the following figure. The baseline design has CPL=1.152,
Nu=76.82 and the optimized design has CPL=0.7764, Nu=78.73.

We use buoyantBoussinesqSimpleDAFoam, which contains heat transfer, buoyancy, and radiation.

1.3.6 Aerostructural

List of cases:

Axial compressor rotor

NOTE: Before running this case, please read the instructions in NACA0012 airfoil incompressible to get an overall
idea of the DAFoam optimization setup.

This is an aerostructural optimization case for an axial compressor rotor (Rotor 67) at subsonic conditions. The
summary of the case is as follows:

Case: Rotor67 Aerostructural optimization
Geometry: Rotor 67: an axial compressor rotor
Objective function: Torque
Design variables: 40 FFD points moving in the x, y, and z directions (120 design variables in total)
Constraints: Constant mass flow rate and total pressure ratio, von Misese stress constraint
Rotation speed: -840 rad/s (50% design speed)
Inlet absolute Mach number: 0.29
Reynolds number: 0.85 million

30 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerothermal/UBend

DAFoam Documentation, Release v1.0

Mesh cells: 61K for fluid and 94K for solid
Adjoint solver: rhoSimpleDAFoam and solidDisplacementDAFoam

The configuration files are available at Github. To run this case, first source the DAFoam environment (see Tutorials).
Then you can go into the runFluid folder and run:

./Allrun.sh 4

The optimization progress will then be written in the log.opt file. The flow simulation results are stored in optOutput-
Fluid and the solid simulation results are stored in optOutputSolid.

For this case, the optimization converges in 8 steps, see the following figure. The baseline design has C_M=0.01862,
m=1.003 m^3/s, p1/p0=1.112, sigma=4.828e7 Pa, and the optimized design has C_M=0.01822, m=1.003 m^3/s,
p1/p0=1.112, sigma=4.828e7 Pa.

The mesh and FFD points are as follows. We use ICEM to generate the triangular meshes and FFD points.

1.3. Tutorials 31

https://github.com/mdolab/dafoam/tree/master/tutorials/Aerostructural/Rotor67

DAFoam Documentation, Release v1.0

In this case, we couple two solvers: rhoSimpleDAFoam (flow simulation) and solidDisplacementDAFoam (structural
analysis). Again, they interact through file IO, so the foamRun.sh script is a bit different from that used in NACA0012
airfoil incompressible. We also define new functions: evalConFuncs, aeroFuncs, and aeroFuncsSens in the
runScript.py

In each optimization case, the run folder contains all the optimization setup. The optOutput folder stores all the
optimization results and logs. We recommend you first read the instructions in NACA0012 airfoil incompressible
before running other cases. All these tutorials use very coarse meshes, you need to refine the mesh for more realistic
runs.

The optimization configurations are defined in runScript.py. There are seven sections:

• Imports. Import all external modules. No need to change.

• Input Parameters. Define the flow, adjoint, and optimization parameters. The explanation of these input pa-
rameters is in Python layer. Refer to classes-python-pyDAFoam-PYDAFOAM-aCompleteInputParameterSet()

• DVGeo. Import FFD files in plot3d format and define design variables.

• DAFoam. Adjoint misc setup. No need to change.

• DVCon. Define geometric constraints such as volume, thickness, and curvature constraints.

• optFuncs. Link optimization functions. No need to change.

• Task. Define optimization tasks (objective function, physical constraints, etc).

Before running the tutorials, you need to load the DAFoam environment.

• If you use the pre-compiled package, run this command to start a container:

32 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

_static/Python/index.html

DAFoam Documentation, Release v1.0

docker run -it --rm -u dafoamuser -v $HOME:/home/dafoamuser/mount -w /home/
→˓dafoamuser/mount dafoam/opt-packages:v1.1 bash

This will mount your local computer’s home directory to the container’s ~/mount directory and login
there. Then, copy the tutorials from ~/repos/dafoam to ~/mount:

cp -r /home/dafoamuser/repos/dafoam/tutorials .

Finally, you can go into the run folder of a tutorial and run the optimization. For example, for the
aerodynamic optimization of NACA0012 airfoil, run:

cd tutorials/Aerodynamics/NACA0012_Airfoil_Incompressible/run && ./Allrun.sh
→˓1

The last parameter 1 means running the optimization using 1 CPU core. After this, check the log.opt
for the optimization progress. All the intermediate shapes and logs (flow, adjoint, mesh quality, design
variables, etc.) are stored in the optOutput directory. Once the optimization is finished, you can run exit
to quit the container and use Paraview to post-process the optimization results on your local computer.
Remember to choose Case Type-Decomposed Case to view the decomposed (parallel) cases in Paraview.

A few notes:

• Treat the Docker container as disposable, i.e., start one container for one optimization run. If the
optimization is running and you want to kill it, just run exit to quit the container.

• Do not store simulation results in the container because they will be deleted after you exit. Run
simulations on the mounted space ~/mount instead.

• dafoamuser has the sudo privilege and its password is: dafoamuser.

• Always run ./Allclean.sh before running ./Allrun.sh.

• If you have compiled DAFoam from the source code following Installation, load the OpenFOAM environment:

. $HOME/OpenFOAM/OpenFOAM-v1812/etc/bashrc

Then, copy the tutorials to your local folder:

cp -r $HOME/repos/dafoam/tutorials .

Finally, you can go into the run folder of a tutorial and run:

./Allrun.sh 1

A few notes:

• Before running the optimization, source the OpenFOAM environment: “.
$HOME/OpenFOAM/OpenFOAM-v1812/etc/bashrc”

• Because the OpenFOAM and Python layers interact through IO, job cleaning needs special attention.
We assume you compile DAFoam from source and run it on an HPC system. In this case, the running
executives will be automatically cleaned when you kill the job. However, if you compile DAFoam
and run it on your local computer (not recommended, use the pre-compiled docker version instead!),
you need to manually kill the job and clean the running stuff (e.g., the foamRun.sh script and other
running executives).

• Always run Allclean.sh before running Allrun.sh.

1.3. Tutorials 33

https://www.paraview.org/

DAFoam Documentation, Release v1.0

1.4 Development

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

DAFoam contains two main layers: OpenFOAM and Python, and they interact through file input and output.

The OpenFOAM layer is written in C++ and contains libraries and solvers for the discrete adjoint, the documentation
of the classes and functions in the OpenFOAM layer is as follows:

OpenFOAM Layer Doxygen

The Python layer contains wrapper class to control the adjoint solvers and also calls other external modules to perform
optimization. The input parameters and the APIs of the Python layer are as follows:

Python Layer Doxygen

Refer to classes-python-pyDAFoam-PYDAFOAM-aCompleteInputParameterSet() for detailed explanation of the op-
timization input parameters.

1.5 Publications

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

2020

• Ping He, Charles A. Mader, Joaquim R.R.A. Martins, Kevin J. Maki. DAFoam: An open-source adjoint frame-
work for multidisciplinary design optimization with OpenFOAM. AIAA Journal, 2020. https://doi.org/10.2514/
1.J058853

• Ping He, Alton J. Luder, Charles A. Mader, Joaquim R.R.A. Martins, Kevin J. Maki. A time-spectral adjoint
approach for aerodynamic shape optimization under periodic wakes. In: AIAA Scitech Forum, 2020. AIAA-
2020-2114. https://doi.org/10.2514/6.2020-2114

2019

• Ping He, Grzegorz Filip, Kevin J. Maki, Joaquim R. R. A. Martins. Design optimization for self-propulsion
of a bulk carrier hull using a discrete adjoint method. Computers & Fluids, 192, pp. 104259, 2019. http:
//dx.doi.org/10.1016/j.compfluid.2019.104259

• Gaetan K. W. Kenway, Charles A. Mader, Ping He, Joaquim R. R. A. Martins. Effective adjoint approaches for
computational fluid dynamics. Progress in Aerospace Sciences, 110, pp. 100542, 2019. http://dx.doi.org/10.
1016/j.paerosci.2019.05.002

• Ping He, Charles A. Mader, Joaquim R. R. A. Martins, Kevin J. Maki. Aerothermal optimization of a ribbed U-
bend cooling channel using the adjoint method. International Journal of Heat and Mass Transfer, 140, 152-172,
2019. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.075

• Ping He, Charles A. Mader, Joaquim R. R. A. Martins, Kevin J. Maki. An object-oriented framework for
rapid discrete adjoint development using OpenFOAM. In: AIAA Scitech Forum, 2019. AIAA-2019-1210.
http://dx.doi.org/10.2514/6.2019-1210

2018

• Ping He, Charles A. Mader, Joaquim R. R. A. Martins, Kevin J. Maki. Aerothermal optimization of internal
cooling passages using the adjoint method, In: 2018 Joint Thermophysics and Heat Transfer Conference, 2018.
AIAA Aviation Forum, AIAA-2018-4080. http://dx.doi.org/10.2514/6.2018-4080

34 Chapter 1. DAFoam: Discrete Adjoint with OpenFOAM

https://dafoam.github.io
_static/OpenFOAM/index.html
_static/Python/index.html
https://dafoam.github.io
https://doi.org/10.2514/1.J058853
https://doi.org/10.2514/1.J058853
https://doi.org/10.2514/6.2020-2114
http://dx.doi.org/10.1016/j.compfluid.2019.104259
http://dx.doi.org/10.1016/j.compfluid.2019.104259
http://dx.doi.org/10.1016/j.paerosci.2019.05.002
http://dx.doi.org/10.1016/j.paerosci.2019.05.002
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.075
http://dx.doi.org/10.2514/6.2019-1210
http://dx.doi.org/10.2514/6.2018-4080

DAFoam Documentation, Release v1.0

• Ping He, Grzegorz Filip, Joaquim R. R. A. Martins, Kevin J. Maki. Hull form hydrodynamic design using a
discrete adjoint optimization method, In: 13th International Marine Design Conference, 2018

• Ping He, Charles A. Mader, Joaquim R. R. A. Martins, Kevin J. Maki. An aerodynamic design optimization
framework using a discrete adjoint approach with OpenFOAM. Computers & Fluids, 168, pp. 285-303, 2018.
http://dx.doi.org/10.1016/j.compfluid.2018.04.012

1.6 Contact

Note: NOTE: this website is for DAFoam v1.1 and is no longer updated. For DAFoam v2.0+, visit dafoam.github.io

1.6. Contact 35

http://dx.doi.org/10.1016/j.compfluid.2018.04.012
https://dafoam.github.io

	DAFoam: Discrete Adjoint with OpenFOAM
	Download
	Installation
	Tutorials
	Aerodynamics
	HeatTransfer
	Structure
	Hydrodynamics
	Aerothermal
	Aerostructural

	Development
	Publications
	Contact

